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Resonance-field dependence of signal intensity in electronically
detected magnetic resonance (EDMR) has been investigated both
theoretically and experimentally. Theoretical expressions present-
ing the field dependence of EDMR signal intensity are obtained
from a quantum mechanical treatment of the Kaplan–Solomon–
Mott model, where it is assumed that recombination only occurs
through recombination pairs in the singlet spin state. In this study,
effects of the exchange interaction in the recombination pair are ex-
plicitly taken into account. The resulting expressions show that the
EDMR signal intensity is proportional to the square of the resonance
field in a low-field region, whereas it becomes constant in a high-field
region, which well explains literature experimental results. This
paper also presents experimentally obtained variable-frequency
(300–900 MHz) EDMR results for light-illuminated crystalline sil-
icone. The experimental data have been analyzed in light of the
present theoretical results, and the upper limit of the exchange in-
teraction has been estimated. C© 2001 Academic Press

Key Words: EDMR; recombination; photoconductivity; silicon
crystal; exchange interaction.
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INTRODUCTION

Electrically detected magnetic resonance (EDMR) is a v
sion of electron spin resonance (ESR) which detects reson
signals as changes of conductivity. This method allows selec
detection of defects and paramagnetic centers that are rel
to conductivity. Furthermore, its sensitivity has been shown
be much higher than that of conventional ESR (1). These ad-
vantages make this technique particularly suited to studie
semiconductor materials and devices, whose electric prope
largely depend on the natures of recombination centers su
defects and paramagnetic centers. Numbers of materials an
vices have so far been studied by EDMR, including not only
rieties of Si samples such as plastically deformed Si (2, 3), amor-
phous hydrogenated Si (a-Si : H) (4, 5), and iron-contaminated
Si (6), but also diverse devices such as Si diodes (7–10), p-i-n
type solar cells (11), SiC and III–V semiconductor devices (12),
and light-emitting diodes (13, 14).
1 To whom correspondence should be addressed.
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One advantage of EDMR is that it observes changes in cur
or voltage. In general, detecting current or voltage is easier t
detecting microwave absorption or dispersion, where the la
is made in usual ESR methods. Another advantage lies in
mechanism of recombination. In fact, it was a surprise in ea
studies that the intensities of observed EDMR signals are la
than that expected from a simple thermal equilibrium mo
(1). Kaplan, Solomon, and Mott (15) proposed a model (often
referred to as the KSM model) which accounts for these un
pectedly large conductivity changes. The KSM model assu
that transient electron-hole pairs (or another type of spin–s
pairs depending on the type of recombination) are formed p
to the recombination and that the pairs should be in the sin
spin state for the recombination to proceed. Since the trip
singlet spin conversion is not efficient under nonresonance c
ditions, the spin pairs in the triplet state will not participa
in the recombination. When the system is brought to the re
nance condition, on the other hand, the ESR transition indu
the singlet–triplet conversion and thus the triplet spin pairs
allowed to participate in the recombination, which leads to
increase of the recombination rate. Kaplanet al.(15) formulated
this model according to a classical treatment and demonstr
essential agreements between the theory and experiment
sults. A more rigorous and quantum-mechanics-based treat
was made by L’vovet al. (3). Their study confirmed the result
of the classical treatment and demonstrated the validity of
KSM model. Recently, Lipset al. (16) investigated the KSM
model more quantitatively and showed that the model reas
ably explains the EDMR results of a-Si : H.

EDMR experiments have so far been performed with v
ious microwave frequency-resonance field settings. These
periments have revealed that the intensity of the EDMR sig
exhibits quite different field dependence from usual ESR.
example, Brandtet al. (4) performed EDMR experiments with
microwave frequencies ofν = 0.434, 9, and 34 GHz and con
cluded that the EDMR signal intensity (under microwave field
the same strength) does not depend on the microwave frequ
employed. Barabanovet al. (17), on the other hand, examine
much lower frequencies of 2–10 MHz and obtained differe
1090-7807/01 $35.00
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type of field dependence, i.e., the EDMR signal intensity is
proximately proportional to the square of the microwave f
quency. We have recently performed an EDMR study with m
crowave frequencies in an intermediate range of 300–900 M
(18). Our results reveal a saturation-type field dependen
where, although the EDMR signal intensity increases with
increase of the resonance field, the increasing rate decre
gradually. This finding strongly suggests that the two types
field dependence reported previously are in fact consistent
each other and that they only reflect the difference in the fi
range investigated.

The next subject would be to clarify the origin of th
saturation-type field dependence, which is expected to pro
valuable insight into further details of the mechanism of sp
dependent recombination. In this study, we attempt to de
theoretical expressions for EDMR which are applicable to
wide field range. In previous theoretical studies, a low-field
high-field approximation is often made, so that no reported eq
tions seem to be applicable to both regions simultaneously.
thermore, there is a notable discrepancy between the prev
theoretical results (3) and our experimental results in field depe
dence of the linewidth of the EDMR signal. According to the th
ory by L’vov et al.(3), the splitting due to theg difference must
exceed the (intrinsic) linewidth in the high-field region whe
the EDMR signal intensity is independent of the resonance fi
Hence, one must observe a splitting of the EDMR signal
more likely, inhomogeneous broadening due tog spread. This
indeed applies well to their experimental results, which sh
an increase of the linewidth with the increase of the resona
field (3). On the contrary, this theoretical result does not acc
with our experimental results, which show no evidence of s
broadening (or splitting) (18). This discrepancy is most likely
due to the fact that their theory does not explicitly include t
exchange interaction that must be present in the transient s
spin pair. Effects of the exchange interaction have been pa
considered in previous studies (19, 20), and the presence of
small exchange interaction in the recombination pair has b
expected. In this study, we formulate the effects of the excha
interaction on EDMR signal intensity according to the quant
mechanical spin density formalism. To our knowledge, this
the first EDMR theoretical study that presents a quantum
chanical spin-density-based treatment that explicitly inclu
the exchange interaction. This theoretical treatment has
vided useful equations which well explain the saturation-ty
field dependence and enable an estimate of the strength o
exchange interaction.

THEORY

Preparations. In the KSM model, it is assumed that tw
spins form a transient pair prior to the recombination. As a ma
of fact, there has long been controversy about the identities o

two spins, and this is correlated with the question of which st
is most responsible for the spin dependence of the recombina
T AL.
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(5, 19–21). For Si samples, it was shown that the tunneli
from a band-tail state into a dangling-bond orbital dominates
recombination (16), and thus the two spins in the KSM mod
would be electron spins in the band-tail state and the dangl
bond orbital. Nevertheless, it should be noted that variati
in the natures of the two spins do not affect the frame of
theory, but only influence the values of the parameters (20).
Accordingly, in the theoretical formulation below, we do n
specify the natures of the two spins.

We consider an exchange-coupled spin–spin pair, where
spin is denoted asSe and the other spin asSh. When a static
magnetic fieldB0 is applied along thez axis and a microwave
field B1 is applied in thexy plane with an angular frequency o
ω, the spin HamiltonianHspin for the spin–spin pair is

Hspin= H0+ H1;

H0 = −-h JSe · Sh+
(
geµBSz

e + ghµBSz
h

)
B0, [1]

H1 = geµB B1(S+e eiωt + S−e e−iωt )

+ghµB Bl (S
+
h eiωt + S−h e−iωt ), [2]

whereSz
e andS±e (=Sx

e ± i Sy
e ) are spin components forSe, and

Sz
h and S±h (=Sx

h ± i Sy
h ) are components forSh. The symbolJ

represents the exchange interaction parameter,ge, andgh repre-
sent theg values of the spinSe andSh, respectively, and othe
symbols have their usual meanings. For later calculations,
convenient to express the equations in the angular frequency
as

H0/
-h = −JSe · Sh+ ωeSz

e + ωhSz
h, [3]

H1/
-h = ηe(S

+
e eiωt + S−e e−iωt )+ ηh(S+h eiωt + S−h e−iωt ), [4]

whereωl = glµB B0/
-h andηl = glµB B1/

-h (l = e, h). In our
experiments, the microwave field is not strong, so that we w
treatH1 as a perturbation. The matrixH0/

-h can be readily solved
and the following eigenenergiesω j are obtained (19, 20, 22);

ω+ = −J/4+ (ωe+ ωh)/2, [5-1]

ωa = J/4+ κ/2, [5-2]

ωb = J/4− κ/2, [5-3]

ω− = −J/4− (ωe+ ωh)/2, [5-4]

where

κ = (J2+1ω2)1/2, [6-1]

1ω = ωe− ωh = (ge− gh)µB B0/
-h. [6-2]
ep
tionThe eigenstates| j 〉 expressed in terms of the bases for the total
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RESONANCE-FIELD D

spins,|T1〉, |T0〉, |T−1〉, and|S〉, are as follows:

|+〉 = |T1〉, [7-1]

|a〉 = α|S〉 + β|T0〉, [7-2]

|b〉 = β|S〉 − α|T0〉, [7-3]

|−〉 = |T−1〉, [7-4]

where

α = sgn(1ω)[(κ − J)/(2κ)]1/2 [8-1]

β = [(κ + J)/(2κ)]1/2. [8-2]

In order to relate quantum quantities with classical quantit
we must calculate the density matrix. For this calculation
is convenient to take the rotating coordinate system whic
rotating about thez axis at the angular frequency identical wi
that of the microwave field,ω. Then, using the new bases|+〉′ =
e−iωt |+〉, |a〉′ = |a〉, |b〉′ = |b〉, and|−〉′ = eiωt |−〉, we have the
following equation for the density matrix (22);

dρ

dt
= i

-h
[ρ, H ′spin] +

(
dρ

dt

)
gen

+
(

dρ

dt

)
rec

+
(

dρ

dt

)
dis

+
(

dρ

dt

)
rel

, [9]

whereH ′spin is the spin Hamiltonian expressed now in the r
tating coordinate system. Its explicit form is given in Eq. [A1
The second, third, fourth, and fifth terms on the right-hand s
represent the changes ofρ due to the pair generation, electro
hole recombination, pair dissociation, and the spin relaxat
respectively (Fig. 1). These terms are taken as follows. First
pair-generation term is taken as spin-independent as in litera
studies (3, 15):

(dρmn/dt)gen= (rg/4)δmn. [10]
FIG. 1. Scheme of the recombination processes.
PENDENCE IN EDMR 15
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Second, we take the recombination term as

(dρmn/dt)rec= −rs〈m|S〉〈S|n〉ρmn, [11]

where|S〉 is the pure singlet state, andrs is the rate paramete
for the recombination from the pure singlet state. It is clear fr
Eqs. [7] that|a〉 and |b〉 are the only eigenstates which have
nonzero product with|S〉, so that only the equations forρaa, ρbb

andρab+ρbahave a nonzero recombination term. Third and la
the pair-dissociation term and the relaxation term are taken

(dρmn/dt)dis+ (dρmn/dt)rel = −ρmn/Tp for m= n, [12-1]

= −ρmn/T2 for m 6= n, [12-2]

whereTp represents the lifetime of the pair andT2 the well-
known spin–spin relaxation time. Here we have omitted
spin–lattice relaxation term (T1 term) to avoid unnecessary com
plexity (23). The spin–lattice relaxation timeT1 is usually in the
order of 10−6 (1)–10−7 s (2), being much longer than typica
values for the pair lifetimeTp ∼ 2.5×10−8 (16)–5×10−8 s (2).
Thus the pair will be dissociated before the spin state rea
its thermal equilibrium, which means that the effects ofT1 are
not important here. Finally, collecting all the terms together,
can obtain the equations for the density matrix elements, w
are shown in Eqs. [A2].

Recombination rate. On the basis of the above model, t
recombination rater rec can be expressed in terms of dens
matrix elements as

r rec= rs(α
2ρaa+ β2ρbb). [13]

Hence, our goal here is to deduceρaaandρbb from Eqs. [A2]. In
order to do this, we take a perturbation approach by regar
H1/

-h as a small perturbation (thusUi ’s in Eqs. [A2] are small
enough). With this approach, the nonperturbed density ma
elements (denotedρ0

mn) can be obtained using the steady-st
approximation (dρmn/dt = 0) as

ρ0
++ = ρ0

−− = rgTp/4, [14-1]

ρ0
aa= rgTp

/[
4
(
1+ α2r 2

s Tp
)]
, [14-2]

ρ0
bb = rgTp

/[
4
(
1+ β2r 2

s Tp
)]
, [14-3]

andρ0
mn= (m 6= n). Next, we consider the changes of the de

sity matrix elements induced by the spin resonance,1ρmn (=
ρmn − ρ0

mn), under the condition that these changes are sm
enough. Because of this condition, (1) we limit the terms to
second order ofUi , (2) we approximate the terms likeU2

i ρpm

asU2
i ρ

0
mn, and (3) we ignore the small quantityηe− ηh, which

is proportional to (ge − gh)B1, and thus we takeη ≡ ηe =
ηh. Furthermore, we assume that the separations of the

vant transitions are small enough or their intrinsic linewidth
is large enough to have these transitions occur simultaneously
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(i.e., all 1ωmn appearing in Eqs. [A2] can be set at ze
simultaneously). This approximation is based on the exp
mental fact that, as described below, we did not observe e
a splitting or an inhomogeneous line broadening in the ED
signal, which strongly suggests that the separations of the
vant transitions are smaller than their intrinsic linewidth in
field range. With these approximations, we obtain the follow
equations from Eqs. [A2]:

(
T−1

p + α2rs
)
1ρaa= 4β2η2T2

(
ρ0
++ + ρ0

−− − 2ρ0
aa

)
, [15-1](

T−1
p + β2rs

)
1ρbb = 4α2η2T2

(
ρ0
++ + ρ0

−− − 2ρ0
bb

)
. [15-2]

Substituting Eqs. [14] into Eqs. [15] yields a theoretical expr
sion for the recombination rater rec. Since the resulting expres
sion shows thatr rec is proportional to the pair-generation raterg,
it is convenient to introduce a new quantitykrec≡ r rec/rg. By use
of this quantity, the following expressions are finally obtaine

r rec= krecrg =
(
k0

rec+1krec
)
rg, [16-1]

k0
rec=

rsTp

2
· 2J2+ (2+ rsTp)1ω2

4(1+ rsTp)J2+ (2+ rsTp)21ω2
, [16-2]

1krec= 2η2r 2
s T3

p T21ω
2 4J2+ (2+ rsTp)21ω2

[4(1+ rsTp)J2+ (2+ rsTp)21ω2]2
,

[16-3]

wherek0
rec is the recombination rate (normalized byrg) under

nonresonance conditions and1krec is the change of the recom
bination rate (normalized byrg) induced by spin resonance.
is important to note thatk0

rec and1krec are independent ofrg.
In Figs. 2 and 3, Eqs. [16-2] and [16-3] are respectively plo
versus1ω/J for variousrsTp, though, as shown later, only th
curves forrsTp < 1 will be relevant to actual systems. Figures
and 3a show thatk0

rec and1krec increase with the increase
1ω/J for small1ω/J, and that, for1ω/JÀ 1, they approach
a constant value that is strongly dependent onrsTp. Fork0

rec, the
value at1ω/J = 0 is also dependent onrsTp, whereas the cor
responding value for1krec is invariably zero. In Figs. 2b and 3b
the curves for variousrsTp are normalized to have the same va
ation range. It is important to note that the shape of the c
does not change remarkably in the rangersTp = 0–1 despite the
wide variation of its scale.

Very small values have been reported toward the productrsTp

in actual systems. For example,rs and Tp were estimated a
rs ∼ 2.5 × 104 s−1 and Tp ∼ 5 × 10−8 s for a plastically
deformed Si (2), andrs ∼ 104–106 s−1 (depending on defec
density) andTp ∼ 2.5× 10−8 s for undoped a-Si : H (16) (Tp in
the present paper corresponds to 1/d in Ref. 16). These value

giversTp ∼ 2.5×10−4–10−2. Hence, it is a good approximation
to expand Eqs. [16-2] and [16-3] in terms ofrsTp and take only
T AL.
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FIG. 2. Theoretically obtained dependence of the nonresonant s
dependent recombinationk0

rec on 1ω/J for rsTp = 0.1, 1, 10, and 100.
(a)k0

rec−1ω/J curves in their original scales. (b) The same curves normal
with their respective variation ranges|k0

rec(B0 = ∞)− k0
rec(B0 = 0)|.

FIG. 3. Theoretically obtained dependence of the resonant spin-depen
recombination1krec (equivalent to the EDMR signal intensity) on1ω/J for
rsTp = 0.1, 1, 10, and 100. (a)1krec/(η2TpT2)−1ω/J curves in their original

scales. (b) The same curves normalized with their respective variation ranges
1krec(B0 = ∞).
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RESONANCE-FIELD D

small-order terms as

k0
rec=

rsTp

4
− (rsTp)2 2J2+1ω2

8(J2+1ω2)
[17-1]

1krec= 1

2
η2TpT2 · (rsTp)2 1ω2

J2+1ω2
. [17-2]

We will use these simplified equations instead of Eqs. [16
and[16-3] for further formulation below.

Conductivity. As a final process of the theoretical formula
tion, we will connect the recombination rate to the conductivi
Essentially following Lipset al. (16), we can obtain rate equa
tions with respect to the conduction electron concentrationne

and the spin–spin pair concentrationN as

dne/dt = G− f ne+ N/Tp, [18-1]

d N/dt = f ne− N/Tp− krec f ne, [18-2]

where f is the coefficient for the pair-generation rate (i.e.,rg =
f ne), G is the generation rate of the conduction electron d
to photoillumination (Fig. 1), and we have used our definiti
r rec = krecrg (see Eq. [16-1]). It should be noted that we do n
need to distinguish the spin state of the pair because this effe
already included inkrec in the above subsection. Equations [1
can be solved with the steady-state approximation as

ne = G/( f krec). [19]

Since the conductivity is proportional tone and we have ne-
glected the intrinsic carrier concentrations, we obtain

σph ∝ krec
−1. [20]

Consequently, the change of the photoconductivity1σph due to
the microwave field is expressed as a ratio to the total photoc
ductivity σph as

1σph/σph = −1krec/krec

= −2η2TpT2 · rsTp ·1ω2/(J2+1ω2), [21]

where we have used the actual relation1krec ¿ krec. Equa-
tion [21] predicts that1σph/σph is proportional to1ω2 in the
weak-field region (1ω ¿ J), whereas it becomes constant
the strong-field region (1ω À J). The former behavior agree
with the EDMR results by Barabanovet al. (17), showing that
the EDMR signal intensity is proportional to the square of t
microwave frequency. The latter behavior, on the other ha
agrees with the results for higher microwave frequencies sh
ing that the EDMR signal intensity is almost constant (2–4).

Quantitative consideration.Now we estimate Eqs. [17-1

and [17-2] and compare them with literature values as a tes
the theory. The second term in Eq. [17-1] represents the fi
PENDENCE IN EDMR 17
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dependence of the recombination rate without microwave fi
which is known as nonresonant spin-dependent recombina
Previous studies for a-Si (24, 25) show that the magnitude of th
effect is typically in the order of 10−3–10−2 when expressed a
a ratio to the total photoconductivity. From Eqs. [17-1] and [2
this ratio must be equal to or less than

|σph(B0 = ∞)− σph(B0 = 0)|/σph = rsTp/2. [22]

Using the values reported by Lipset al. (16), rs ∼ 104–106 s−1

(depending on defect density) andTp ∼ 2.5× 10−8 s, one can
estimate the ratio as∼1.25×10−4–10−2. This value is in agree
ment with the previous experimental results (24, 25).

Equation [17-2], on the other hand, represents the chang
the recombination rate due to application of microwave fie
resonant spin-dependent recombination. The order of this e
as determined by EDMR is typically 10−5–10−3 (16) when ex-
pressed as a ratio to the total photoconductivity. The expres
for the ratio has been given in Eq. [21], and the maximum of
absolute value of the ratio is

|1σph(B0 = ∞)/σph| = 2η2TpT2 · rsTp. [23]

Unfortunately, the magnitude of the microwave fieldB1 is usu-
ally not specified in literature papers, so that theη2TpT2 values
in previous experiments are not clear. Therefore, here we
the value in our experiment (B1 = 39.2µT), which will not be
very different from literature values. Then, also using thers and
Tp values given above andT2 = 2.6× 10−8 (from the linewidth
1Bpp ∼ 0.25 mT, see below), we can estimateη2TpT2 = 0.03.
This leads to an estimate of the ratio∼1.5× 10−5–10−3, which
is again in agreement with the previous experimental resul

RESULTS AND DISCUSSION

In the previous study, we performed EDMR measurement
a light-illuminatedn-type Si crystal in a frequency range 30
900 MHz (18). The study showed that the increase of the re
nance field causes no changes in linewidth of the EDMR sig
In these measurements, however, we employed a relatively
amplitude of field modulation (0.4 mT) for the lock-in dete
tion, which may have obscured a possible change of linew
We have therefore reinvestigated the field dependence o
EDMR signal using a smaller field modulation (0.13 mT). R
resentative spectra are shown in Fig. 4, where the upper p
(Fig. 4a) shows field-derivative spectra originally recorded
our apparatus and the lower panel (Fig. 4b) shows the nume
integrals of the field-derivative spectra. Figures 5 and 6 dis
the resonance-field dependence of the EMDR signal inten
and the peak-to-peak linewidth, respectively. The present re
coincide with the previous ones within experimental errors.

t of
eld
portant parameters are listed in Table 1, where some literature
field-dependence EDMR data are also included for comparison.
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FIG. 4. EDMR spectra of a photoilluminatedn-type Si crystal measured
with microwave frequencies ofν = 300, 500, 700, and 900 MHz. (a) Field
modulated spectra. Conditions: frequency and width of the field modula
365 Hz and 0.13 mT; field sweep rate, 10 mT/2.0 s, time constant, 1 ms; ac
cumulation, 256 times; temperature, room temperature,B1 = 39.2 µT; bias
current, 10µA. (b) Numerical integrals of the spectra, where nonresonan
fects appearing as a slanted baseline are subtracted.

As is clear from comparison between Figs. 3 and 5, the theo
ical and experimental results exhibit the same field depende
Thus one can estimate some parameters in the theory from
fitting of the data to Eq. [21]. A least-squares fit provides

FIG. 5. Resonance-field dependence of the EDMR signal intensity.
solid circles represent experimental results for a photoilluminatedn-type Si
crystal at microwave frequencies of 300, 400, 500, 600, 700, 800, and 900 M
The bars represent the standard deviations from three independent recor

Experimental conditions are given in the legend of Fig. 4. The solid curve
obtained from the least-squares fit to Eq. [21].
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FIG. 6. Resonance-field dependence of the EDMR signal linewidth (
peak-to-peak linewidth). The solid circles represent experimental results
photoilluminatedn-type Si crystal at microwave frequencies of 300, 400, 50
600, 700, 800, and 900 MHz. The bars represent the standard deviations
three independent recordings. Experimental conditions are given in the le
of Fig. 4.

η2TpT2 · rsTp = 1.2× 10−5, [24-1]

J/[2π · |ge− gh|] = 1.3× 102 MHz. [24-2]

Equation [24-1] can be used to estimate the recombina
rate parameter for the pure singlet state,rs. In our settings,
B1 = 39.2µT, which corresponds toη = 2π×1.1×106 s−1. The
spin–spin relaxation time may be estimated from the linewi
1Bpp ≈ 0.28 mT asT2 = 2.6 × 10−8 s, where the relation
(gµB/

-h) · 1Bpp = 2(3)−1/2T−1
2 for the Lorentzian lineshape

is used (22). Thus, also usingTp = 2.5 × 10−8 s (16), we
obtain rs = 1.6 × 104 s−1. This value is reasonable for th
recombination-rate parameter of the singlet state, compared
with literature values such as 2.5× 104 s−1 (Ws in Ref. 2) and
104 s−1 for Si of low defect density (16). Equation [24-2], on
the other hand, can be used to estimate the exchange-intera
parameterJ. To estimateJ, however, we must know the dif
ference of theg values. Unfortunately, theg difference is not
clear from our data. Nevertheless, we can estimate its upper
from the linewidth. The linewidth observed atν = 900 MHz is
0.28 mT (Fig. 6), from which we can estimated|ge−gh| < 0.01.
We can therefore obtainJ/2π < 1.3 MHz (26). This J value
is smaller than the observed linewidth (∼7 MHz in the fre-
quency unit), which is consistent with the fact that we did n
observe a splitting due to the exchange interaction. ThisJ value
is also in accordance with a previously estimated upper limi
J < 30 MHz (20). The magnitude of exchange interaction
strongly dependent on the distance between the two spins19).
Thus this relatively smallJ value seems to indicate that the tw
recombination centers are separated by a large distance.

In the theoretical study by L’vovet al. (3), the field depen-
dence of the signal intensity was attributed to the change in
relation between1ω (∝B0) and time parameters (which we ma
denote asT temporary). The time parameters include the s
relaxation times and the pair lifetime. According to their theo

isthe intensity of the EDMR signal increases with the increase
of static field in the weak-field case (1ω ¿ 1/T), whereas it
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TABLE 1
Resonance-Field Dependence Data for EDMR of Silicone Samples

Microwave |1σph/σph| Linewidth Temp
Sample g Value freq(GHz) (10−3)a (mT)a,b (K) Ref.

Single crystal 2.007± 0.002 9.3 0.001 1.5 (1/2) 300 1
Single crystal 2.005± 0.003 0.300–0.900 0.013–0.022 ∼0.25 (pp) RTc This work

(@B1 = 39.2µT)
0.890 0.041 (@saturation) RT 18

Dislocated Si NAc 0.005–0.009 0.09–0.24 ∼0.2 (1/2) RT? 17
Deformed Si NA 0.030 ∼0.02 (@saturation) ∼0.2 (1/2) 300 3

2.4 ∼0.1 (@saturation) ∼0.8 (1/2)
9.4 ∼0.1 (@saturation) ∼1.6 (1/2)

a-Si : H NA 0.434 ∼0.0015 (@B1 = 10µT) ∼0.2 (pp) 300 4
∼0.01 (@saturation)

9 ∼0.005 (@B1 = 10µT) ∼0.75 (pp)
∼1 (@saturation)

34 ∼0.004 (@B1 = 10µT) ∼2.5 (pp)

a Some values are directly read from figures.

b (1/2) indicates the full-width half-magnitude linewidth and (pp) indicates the peak-to-peak linewidth.
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c NA, not available; RT, room temperature.

becomes constant in the strong-field case (1ω À 1/T). Since
the time parameters determine the (intrinsic) linewidth of
signal, the strong-field case corresponds to the case whereg
difference exceeds the linewidth. Hence, one can expect a s
ting of the signal under high magnetic field. As a matter of fa
they did not observe such a peak splitting but a remarkable
crease of the linewidth. They therefore concluded that a se
inhomogeneous line broadening due tog spread occurs in thei
system and that this obscures the expected splitting of the
nal. In contrast to this, our sample showed no field-depen
changes in linewidth over the field range 10–35 mT (Fig.
despite the substantial change of the signal intensity. Thes
sults cannot be understood from the previous theory. On
contrary, these results are not surprising from the viewpoin
our theory because the field dependence of the signal inte
is due to the change in the relation between1ω andJ, not be-
tween1ω andT . Interestingly, theT2 value (T2 = 2.6×10−8 s)
estimated from the linewidth of our sample is comparable to
Tp value (Tp = 2.5× 10−8 s). This strongly suggests that th
observed linewidth comes mainly from the intrinsic linewid
and that there are no or negligible contributions from inhom
geneous line broadening at least in the field range<35 mT. Fur-
thermore, as Table 1 shows, the smallest linewidths in prev
variable-frequency EDMR studies are all around 0.2 mT, be
very similar to the linewidth obtained in this study (∼0.25 mT).
This also supports the idea that1B = ∼0.2–0.25 mT corre-
sponds to the intrinsic linewidth.

EXPERIMENTAL

Variable-frequency EDMR measurements were performe
a spectrometer constructed in our laboratory. Briefly, the

crowave generated by an Anritsu MG3633 oscillator and a
plified by an R&K A1000-1050 power amplifier was led to
he
he
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ct,
in-
ere

sig-
ent
4)
re-

the
of
sity

the
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single-turn coil (8 mm in diameter), at the center of which
sample to be measured was placed. The magnetic flux de
of the microwave field at the center of the coil was estima
using Eq. [3] in Ref. (18), and adjusted to a constant amplitu
of B1 = 39.2 µT. The voltage between the two electrodes
tached to the sample was measured with a PARC Model 5
lock-in amplifier. The magnetic field was modulated at 365
with a modulation coil for the lock-in detection. In this stud
the amplitude of the field modulation was taken as 0.13
which is smaller enough than the linewidth of the EDMR s
nal studied here. All the measurements were carried ou
room temperature. The sample used was a rectangular-s
phosphor-dopedn-type silicon crystal, where the phosphor co
centration is∼1014/cm3 and the dark resistance is 5 kÄ-cm.
The crystal had dimensions of 15 mm× 2 mm × 0.5 mm
with the largest face being the (100) face. The crystal wa
luminated with a light bulb (1 W) and given a bias curre
of 10 µA (which caused a voltage of∼0.693 V between the
electrodes) during measurements. More details of our ED
spectrometer and experimental setups were described previ
(18).

APPENDIX 1

The spin Hamiltonian in the rotating coordinates is

|+〉′ |a〉′ |b〉′ |−〉′

H ′spin/
-h =


ω+ − ω U1 U2 0

U1 ωa 0 U3

U2 0 ωb U4

 , [A1]

m-
a 0 U3 U4 ω− + ω
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where

U1 = Qηe− Pηh, U2= Pηe+ Qηh,

U3 = −Pηe+ Qηh, U4= Qηe+ Pηh,

and

P = −sgn(J)[(κ +1ω)/(2κ)]1/2,

Q = [(κ −1ω)/(2κ)]1/2.

APPENDIX 2

The equation of the density matrix can be written as

dρ++/dt = − iU1(ρa+ − ρ+a)− iU2(ρb+ − ρ+b)

− ρ++/Tp+ rg/4, [A2-1]

dρaa/dt = iU1(ρa+ − ρ+a)− iU3(ρ−a− ρa−)

− ρaa/Tp− α2rsρaa+ rg/4, [A2-2]

dρbb/dt = iU2(ρb+ − ρ+b)− iU4(ρ−b− ρb−)

− ρbb/Tp− β2rsρbb+ rg/4, [A2-3]

dρ−−/dt = iU3(ρ−a− ρa−)+ iU4(ρ−b− ρb−)

− ρ−−/Tp+ rg/4, [A2-4]

d(ρa+ − ρ+a)/dt = 2iU1(ρaa− ρ++)+ iU2(ρba+ ρab)

+ i1ω+a(ρa+ + ρ+a)

− (ρa+ − ρ+a)/T2, [A2-5]

d(ρa+ + ρ+a)/dt = −iU2(ρba− ρab)+ i1ω+a(ρa+ − ρ+a)

− (ρa+ + ρ+a)/T2, [A2-6]

d(ρb+ − ρ+b)/dt = 2iU2(ρbb− ρ++)+ iU1(ρba+ ρab)

+i1ω+b(ρb+ + ρ+b)

− (ρb+ − ρ+b)/T2, [A2-7]

d(ρb+ + ρ+b)/dt = iU1(ρba− ρab)+ i1ω+b(ρb+ − ρ+b)

− (ρb+ + ρ+b)/T2, [A2-8]

d(ρba− ρab)/dt = iU1(ρb+ + ρ+b)− iU2(ρa+ + ρ+a)

+ iU3(ρ−b+ ρb−)− iU4(ρ−a+ ρa−)

+ iωab(ρba+ ρab)

− (ρba− ρab)/T2, [A2-9]

d(ρba+ ρab)/dt = iU1(ρb+ − ρ+b)+ iU2(ρa+ − ρ+a)

− iU3(ρ−b− ρb−)− iU4(ρ−a− ρa−)

+ iωab(ρba− ρab)− (ρba+ ρab)/T2
−αβrs(ρba+ ρab), [A2-10]
T AL.

d(ρ−a− ρa−)/dt = 2iU3(ρ−− − ρaa)− iU4(ρba+ ρab)

+ i1ωa−(ρ−a+ ρa−)

− (ρ−a− ρa−)/T2, [A2-11]

d(ρ−a+ ρa−)/dt = −iU4(ρba− ρab)+ i1ωa−(ρ−a− ρa−)

− (ρ−a+ ρa−)/T2, [A2-12]

d(ρ−b− ρb−)/dt = 2iU4(ρ−− − ρbb)− iU3(ρba+ ρab)

+ i1ωb−(ρ−b+ ρb−)

− (ρ−b− ρb−)/T2, [A2-13]

d(ρ−b+ ρb−)/dt = iU3(ρba− ρab)+ i1ωb−(ρ−b− ρb−)

− (ρ−b+ ρb−)/T2, [A2-14]

whereωmn = ωm − ωn and1ωmn = ωmn − ω. In the equa-
tions, the componentsρ−+ andρ+− are omitted because they a
not important when the single-quantum transitions|+〉, |−〉 →
|a〉, |b〉 are concerned, as in this case.
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